DETERMINANTS OF COMMERCIAL BUILDING LOAD SHAPES

Presentation to

ELCAP Workshop II

 $\mathbf{B}\mathbf{y}$

Baker, Reiter and Associates

SCL Residential and Commercial Hourly Loads

Purpose:

 Examine the role of schedules in the determination of hourly loads for commercial buildings

Plan:

- Identify the patterns of variability in the commercial sector
- Characterize the determinants of this variability (or consistency)
- Apply these concepts to early commercial ELCAP sites
 - Evaluate the share of energy use attributable to scheduled loads
 - Evaluate the contribution of scheduling to variability
 - Evaluate the performance of schedules as a predictor of hourly building loads

Caveats:

• Should view this work as stimulating thinking on topic, not producing definitive answers

Preliminary Observations Concerning Commercial Sector Load Shape:

- Relatively uniform across months
- Striking weekday/weekend differences
- Diurnal patterns resemble trapezoids
- Patterns are consistent throughout the year

Questions Concerning Determinants of Shape:

- What are the determinants of consistency and variability and to what extent do building schedules account for both?
- Do we observe the same patterns and driving forces in individual buildings?
- Can we take advantage of this knowledge in predicting building loads?

The dictionary defines a schedule as:

... a list of the times of recurring events

Key elements are predictable:

- onset
- duration
- magnitude?

Application to buildings energy use:

- equipment schedule(s)
- building schedule(s)

SCL Residential and Commercial Hourly Loads

ARCHETYPAL LOAD SHAPES

I. Non-Temperature Sensitive -- Determined by Service hours

Archtype Example

Lites
Equip

Fans
Refrig

II. Temperature Sensitive --

Determined by Service Hours, Internal Loads and Outside Temperature

Heat

Cooling

SCHEDULES AS A DETERMINING FACTOR IN DIURNAL LOAD SHAPE

- Two classes of loads
 - Principally non-temperature dependent
 - Temperature dependent
- Non-temperature dependent fall into two basic classes
 - Schedule of operation tied to building service hours
 - Constant operation
- Business hours constrain structure of temperature dependent loads
- Unidirectional interaction between nontemperature dependent loads and temperature dependent loads
- Interactions affect magnitude and duration of temperature dependent loads
- Building load shape product of dominant enduse(s)

STEPS IN THE ANALYSIS OF SCHEDULES

- Identification of diurnal load shapes
- Classification of daytypes
- Evaluation of contribution of scheduled loads to building energy use
- Assessment of stability of schedules over months of the year
- Evaluation of contribution of scheduling to variability in hourly loads
- Construct schedule-based predictors of hourly loads

DIURNAL LOAD SHAPES

Seattle Warehouse

Week Day Loads

Schedule

SEASONAL COMPARISON OF DIURNAL LOAD SHAPES

Seattle Warehouse

Week Day Loads

DISTRIBUTION OF ENERGY USE

Seattle Warehouse

End Use

Sched vs Temp

MARCH

MARCH

JULY

JULY

YEAR TO DATE

YEAR TO DATE

CONSTRUCTION OF SCHEDULING FUNCTION

Seattle Warehouse

CONCEPTUAL:

BLDG LOAD = BASE + INCREMENT (during operating hours) + OTHER

REGRESSION:

BLDG LOAD = CONSTANT + (COEFF * BLDG SCHED) + RESID

RESID = f (INDOOR TEMP, OUTSIDE TEMP, INTERACTIONS, ...)

RESULTS:

BLDGLOAD =
$$5005 + (18836 * BLDG SCHED)$$
 (watts)

R2 = .60 F = 4502.

DIURNAL LOAD SHAPES

Seattle Retail Store

Week Day Loads

Schedule

SEASONAL COMPARISON OF DIURNAL LOAD SHAPES

Seattle Retail Store

Week Day Loads

DISTRIBUTION OF ENERGY USE

Seattle Retail Store

End Use

Sched vs Temp

FEBRUARY

FEBRUARY

JULY

JULY

YEAR TO DATE

YEAR TO DATE

CONSTRUCTION OF SCHEDULING FUNCTION

Seattle Retail Store

CONCEPTUAL:

BLDG LOAD = BASE + INCR (heat sched) + INCR (light/bldg) + OTHER

REGRESSION:

RESID = f (INDOOR TEMP, OUTSIDE TEMP, INTERACTIONS, ...)

RESULTS:

R2 = .72 F = 6548.

